*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
↳ QTRS
↳ DependencyPairsProof
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
*12(+2(x, y), z) -> *12(x, z)
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*12(+2(x, y), z) -> *12(y, z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
*12(+2(x, y), z) -> *12(x, z)
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*12(+2(x, y), z) -> *12(y, z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, oplus2(y, z)) -> *12(x, y)
*12(x, oplus2(y, z)) -> *12(x, z)
Used ordering: Polynomial interpretation [21]:
*12(+2(x, y), z) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*12(+2(x, y), z) -> *12(y, z)
POL(*2(x1, x2)) = x2
POL(*12(x1, x2)) = x2
POL(+2(x1, x2)) = 0
POL(oplus2(x1, x2)) = 1 + x1 + x2
POL(otimes2(x1, x2)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
*12(+2(x, y), z) -> *12(x, z)
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*12(+2(x, y), z) -> *12(y, z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, *2(y, z)) -> *12(otimes2(x, y), z)
POL(*2(x1, x2)) = 1 + x2
POL(*12(x1, x2)) = x2
POL(otimes2(x1, x2)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> *12(y, z)
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> *12(y, z)
POL(*12(x1, x2)) = x1
POL(+2(x1, x2)) = 1 + x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
*2(x, *2(y, z)) -> *2(otimes2(x, y), z)
*2(1, y) -> y
*2(+2(x, y), z) -> oplus2(*2(x, z), *2(y, z))
*2(x, oplus2(y, z)) -> oplus2(*2(x, y), *2(x, z))